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 Two-dimensional nanomaterials have emerged as promising candidates for next-generation 
electronics and optoelectronics [1], but advances in scalable nanomanufacturing are required to exploit 
this potential in real-world technology. This talk will explore methods for improving the uniformity of 
solution-processed graphene and related two-dimensional nanomaterials with an eye toward realizing 
dispersions and inks that can be deposited into large-area thin-films [2]. In particular, density gradient 
ultracentrifugation allows the solution-based isolation of graphene [3], boron nitride [4], montmorillonite 
[5], and transition metal dichalcogenides (e.g., MoS2, WS2, MoSe2, and WSe2) [6] with homogeneous 
thickness down to the atomically thin limit. Similarly, two-dimensional black phosphorus is isolated in 
organic solvents [7] or deoxygenated aqueous surfactant solutions [8] with the resulting phosphorene 
nanosheets showing field-effect transistor mobilities and on/off ratios that are comparable to 
micromechanically exfoliated flakes. By adding cellulosic polymer stabilizers to these dispersions, the 
rheological properties can be tuned by orders of magnitude, thereby enabling two-dimensional 
nanomaterial inks that are compatible with a range of additive manufacturing methods including inkjet [9], 
gravure [10], screen [11], and 3D printing [12]. The resulting printed two-dimensional nanomaterial 
structures show promise in several applications including photodiodes [13], anti-ambipolar transistors 
[14], gate-tunable memristors [15], and heterojunction photovoltaics [16]. 
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