Graphene Device and Process Integration - Challenges ahead!

Max Lemme

University of Siegen, Germany

Graphene research has matured from fundamental investigations of material properties to very specific demonstrations of devices and their potential for applications. In this talk, I will present several promising areas, where the exceptional properties of graphene may be exploited. Two examples are graphene-based hot electron transistors [1], [2] and graphene-membrane-based nanoelectromechanical systems [3], [4]. However, proper device and process integration remains challenging and currently prevents commercialization. Several such open issues will be discussed in detail [5], [6].

- [1] S. Vaziri *et al.*, "A Graphene-Based Hot Electron Transistor," *Nano Lett.*, vol. 13, no. 4, pp. 1435–1439, Apr. 2013.
- [2] S. Vaziri *et al.*, "Going ballistic: Graphene hot electron transistors," *Solid State Commun.*, vol. 224, pp. 64–75, Dec. 2015.
- [3] A. D. Smith *et al.*, "Electromechanical Piezoresistive Sensing in Suspended Graphene Membranes," *Nano Lett.*, vol. 13, no. 7, pp. 3237–3242, Jul. 2013.
- [4] A. D. Smith *et al.*, "Resistive graphene humidity sensors with rapid and direct electrical readout," *Nanoscale*, vol. 7, no. 45, pp. 19099–19109, 2015.
- [5] G. Lupina *et al.*, "Residual Metallic Contamination of Transferred Chemical Vapor Deposited Graphene," *ACS Nano*, vol. 9, no. 5, pp. 4776–4785, May 2015.
- [6] S. Wagner, C. Weisenstein, A. D. Smith, M. Östling, S. Kataria, and M. C. Lemme, "Graphene transfer methods for the fabrication of membrane-based NEMS devices," *Microelectron. Eng.*, vol. 159, pp. 108–113, Jun. 2016.