Presenting Author		Country	Topic	Poster Title	Number				
Alphabetical Order									
AbdelGhany	Mohamed	Canada	Nanoelectromechanical systems	Demonstration of Suspended Graphene Varactors	19				
Alattas	Maha	Saudi Arabia	Magnetism and Spintronics	Quasi-freestanding graphene on Ni(111) by Cs intercalation	18				
Alsaedi	Dawood	Canada	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Graphene Oxide Sol-Gel Nano Interdigitated sensor	1				
Ballestar Balbás	Ana Isabel	Spain	Graphene commercialisation	Influence of SiC substrate modification on the growth of epitaxial graphene	12				
Barnes	Mathew	United Kingdom	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Flexible and transparent, graphene- based capacitive touch sensing	2				
Bigras	Germain Robert	Canada	Chemistry of Graphene	Defect Controlled Addition of Nitrogen into Aromatic Configurations in CVD-Grown Graphene by Microwave Late Afterglow Plasma Exposure	10				
Burzhuev	Salamat	Canada	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Decreasing contact resistance in graphene devices by optimizing edge contact under metal	3				
Chaudhuri	Arnab	Canada	Nanoelectromechanical systems	Suspended Nanoelectromechanical Resonators with High Quality CVD Graphene	20				
Chen	Xin	China	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Industry production of graphene materials applied in lithium ion batteries	4				
Favron	Alexandre	Canada	dichalcogenides,	Humidity Effects and Anisotropic Etching During Exfoliated Black Phosphorus Degradation	23				
Flores Hernández	Juan Gerardo	Mexico	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Modulation of the optical transmittance in the fullerene c60-few graphene system by an electrical signal	5				
Fortin- Deschênes	Matthieu	Canada	Other 2 dimensional materials (Transition metal dichalcogenides, phosphorene, silicene, BN, topological insulators,)	Real time observation of exfoliated black phosphorus sublimation	24				
Ghajar	Mohamm ad- Hossein	Canada	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Mechanical Characterization of Graphene Based Bucky Gel Actuator	6				
Kuester	Scheyla	Canada	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Hybrid nanocomposites based on poly (styrene-b-(ethylene-co-butylene)-b-styrene)/carbon nanotubes/graphene for electromagnetic shielding	7				
Kutsuma	Yasunori	Japan	Growth, synthesis techniques and integration methods	The basic mechanism of anisotropic graphene growth on 4H-SiC{1-10n} for large and uniform graphene wafer	13				

Presenting Author		Country	Topic	Poster Title	Number				
Alphabetical Order									
Latini	Simone	Denmark	Other 2 dimensional materials (Transition metal dichalcogenides, phosphorene, silicene, BN, topological insulators,)	Quasi two-dimensional models of Dielectric Screening and Excitons: From Atomically thin Materials to van der Waals Heterostructures	25				
Lavin Lopez	Maria del Prado	Spain	Growth, synthesis techniques and integration methods	CVD-graphene synthesis using different transition metals as catalyst	14				
Marquez	Carlos	Spain	Growth, synthesis techniques and integration methods	Electrical Properties of Laser Reduced Graphene Oxide	15				
McRae	Andrew	Canada	Quantum transport	Platform for Quantum Strain Engineering in Graphene	27				
Mohan	Velram Balaji	New Zealand	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Electrical conductivity of polymer/polymer/graphene hybrid composites	8				
Munoz	Enrique	Chile	Nanoelectromechanical systems	Magnetostrain-driven quantum engine on a graphene flake	21				
Nguyen	Minh	Canada	Chemistry of Graphene	Controlled Growth of Graphene Bilayers and Their Chemical and Physical Properties	11				
Sarkissian	Andranik	Canada	Growth, synthesis techniques and integration methods	Plasma and Vacuum Assisted Synthesis of Nanostructured Carbon Allotropes	16				
Sommer	Allison	United States	Applications (gaz sensors, batteries, composites, nanoelectronic devices, etc.)	Preparation and Characterization of Graphene Oxide Polymer Matrix Composites	9				
Storms	Matthew	Canada	Nanoelectromechanical systems	Graphene Bilayer Electromechanical Systems	22				
Varonides	Argyrios	United States	Quantum transport	Combined thermionic emission and tunneling currents model for Graphene/n-Si Schottky Barriers under reverse bias	28				
Viana Gomes	José Carlos	Singapore	Other 2 dimensional materials (Transition metal dichalcogenides, phosphorene, silicene, BN, topological insulators,)	Nonlinear optical response of Phosphorene	26				
Whiteway	Eric	Canada	Growth, synthesis techniques and integration methods	Continuous temporal imaging of graphene growth by isotope labelling	17				